Extensive-Form Games

- An Extensive-Form Game consist of the following elements:
- A set of players N
- A set of histories H (all possible sequences of moves)
- A player function P, which assigns a player (decisionmaker) to every history
- A payoff function, which assigns payoffs for each player to every terminal node
- It differs from a Normal-Form Game
- It is dynamic (players move in some order)

■ Players may observe histories (what happened so far in the game)

- Every time a player makes a move, that move can be conditioned on the history

Game Trees

- A game tree is a graph that represents an extensive-form game, like a game matrix for normal-form games
- In practice, this representation is used only for relatively simple games
- Game Trees consist of:
- Nodes (Decision Nodes, Terminal Nodes), that represent histories
- Branches (Arcs), that represent the possible decisions (moves, actions) at a decision node

Game Trees - Examples

- Biased matching pennies

Game Trees - Examples

- A 3-player game

Game Trees - Examples

■ Ultimatum game

Strategies in ext.-form games

- In extensive-form games, a (pure) strategy is a complete game plan, i.e. it assigns a (pure) decision to every possible decision node
- In the 3-player game, each player has only two pure strategies
- In the biased matching pennies, player 1 has 2 strategies, player 2 has 4
- In the ultimatum game, player 1 has 5, player 2 has 32 strategies

Reducing to Normal Form

- The following game reduces to...

Reducing to Normal Form

■ Something like this:

		Player 2			
Player 1		LL	LR	RL	RR
	U	$\underline{2}, \underline{1}$	$2, \underline{1}$	$\underline{0}, 0$	0,0
	D	$-1,1$	$\underline{3}, \underline{2}$	$-1,1$	$\underline{3}, \underline{2}$

Subgame Perfect Nash Equilibrium (SPNE)

- A subgame of an extensive-form game (with perfect information) is a game which begins at any nonterminal history and contains all nodes (histories) and possible moves that can follow after that history.
- A subgame-perfect Nash Equilibrium (SPNE) is pair of strategies (pure or mixed) which forms a NE in every subgame. SPNE is a refinement of NE.
- The optimal algorithm of identifying SPNE is backward induction. You start from finding bestresponses in the smallest (final) subgames and then consider ever bigger subgames, fixing the bestresponses which have been identified in smaller subgames. Problem: cannot be used in infinitehorizon games.

Finding SPNE

■ In the last example, only (D, LR) is a SPNE, even though there are 3 NE

- In the 3-player game (L1, R2, R3) is a SPNE, but $(R 1, L 2, L 3)$ is a NE that is not subgame perfect
- In the biased matching pennies game, in all SPNEs player 2 plays TH (player 1 is indifferent between T and H)

The drawbacks of SPNE

- Find the SPNE of the Centipede Game

■ SPNE=\{SS..S,SS..S\}

